





# OncoDEEP

OUR UNIQUE SOLUTION COMBINING NGS AND PROTEIN ANALYSES OF A SOLID TUMOUR SAMPLE

SCREENING MORE THAN THE USUAL SUSPECTS **Combination is Key for Clinical Benefit** 



# Clinical evidence: Combination of profiling methods is essential

#### COMBINATION OF DIFFERENT PROFILING METHODS IN ADVANCED CANCER PATIENTS AFTER TREATMENT(S) FAILURE

1,057 patients in 30 countries (4 continents) were treated by oncologists using OncoDNA's molecular profiling & Information Services

1. NGS alone is not enough to decide for treatment



#### 2. Adoption of our holistic approach



#### 3. Improved overall survival

(n=114), the overall survival was analysed.

For 92% of the oncologists, combining NGS with Package Plus\* data results has a better clinical insight.

Patients with treatment options (approved for the cancer type analysed, approved for other cancer types or under development) and without, according to test;

92.7% of the oncologists agreed with OncoDNA's recommendations.

Results of oncologist survey. Treatment choices according and against recommendations:



3. Overall survival of patients. For the cases where our recommendations were followed

Based on OncoDNA approach, at least 50% of the patients had an OS of > 6 months, and 27% of patients had a minimum overall survival > 12 months (expected OS of ~3 - 6 months) (Laes et al 2018)

\*Package plus includes additional test of imunohistochemistry (IHC) for chemo, immuno and targeted therapies, and other molecular test like: methylation of the MGMT promoter, the expression of either EGFRVIII, MET protein, receptor tyrosine kinase (MET)- exon 14 deletion or androgen-receptor splice variant 7 (ARV7), and microsatellite instability testing.

## Combining different molecular profiling assays is the key to maximize the clinical benefit of the treatment

Molecular characterization of the tumour using next generation sequencing (NGS) technology, has become a key tool for facilitating treatment decisions and the clinical management...

#### Tsoulos et al 2017

F. Losa et al 2018



Diagnostics and gene expression platforms are considered helpful when used to complement IHC testing, because the results they are providing can be compared against many databases, allowing more accurate diagnosis...

# OncoDEEP is the gold standard combination of molecular profilings

## THE BEST SET OF DATA FOR IMMUNOTHERAPY SELECTION

Thanks to the best market proposal for combination of druggable DNA/RNA mutations detection, TMB, MSI, LOH (lost of heterozygosity), Fusion Panel, IHC, ...

## THE NEW VERSION OF ONCODEEP

| 4 times more genes |
|--------------------|
| & gene regions     |

#### 313 GENES INSTEAD OF 75

- → Including genes involved in Homologous Recombination Deficiency (HRD) for PARP inhibitors
- → Including more genes involved in immunotherapy selection
- → Strongly enlarged panel of genes for improved TMB and MSI calculation

Microsatellite instability (MSI)

@ OncoDEEP

OncoDEE

## FOR ONCODNA THE USUAL SUSPECTS ARE NOT ENOUGH

→ Broader coverage to increase the accuracy of our algorithm

## Unique design for LOH

#### UNEQUALLED POWER

- → More SNPs for heterozygosity and LOH analysis for key genes associated with response to immunotherapy
- → OncoDEEP is the only product assessing either homozygotous or heterozygotous deletion of genes in relationship with immunotherapy



#### ON TOP OF CLASSICAL SUSPECTS

OncoDEEP enable detecting broader fusions (even for unknown partner) and a broader detection with new:

- ightarrow probes for NTRK1 / 2 and 3
- → probes to detect MET-ex14 and EGFRVIII
- → probes to allow the quantification of the expression of FGFR1 / 2 & 3
- ightarrow probes for ALK / ROS1 / RET



# **OncoDEEP** screens the tumours much beyond the usual suspects

#### NEXT GENERATION SEQUENCING (NGS) - 313 GENES

| ABL1     | BCL9   | CSNK2A1 | FBXW7    | JAK2   | MYC    | PIM1    | RNF43   | STAT3   |
|----------|--------|---------|----------|--------|--------|---------|---------|---------|
| ACVR1    | BCOR   | CTNNB1  | FGF3     | ЈАКЗ   | MYCL   | POLD1   | ROS1    | STK11   |
| ACVR1B   | BIRC2  | CTNND1  | FGFR1    | KDM6A  | MYCN   | POLE    | RPS6KA3 | TAF1    |
| ACVR2A   | BIRC3  | CUL1    | FGFR2    | KDR    | MYD88  | PPP2R1A | RPS6KB1 | TBL1XR1 |
| AJUBA    | BRAF   | CUL3    | FGFR3    | KEAP1  | MYO18A | PPP6C   | RPTOR   | TBX3    |
| AKT1     | BRCA1  | CYP2C19 | FGFR4    | KIT    | NCOR1  | PRKAR1A | RQCD1   | TCEB1   |
| AKT2     | BRCA2  | CYP2D6  | FLCN     | KNSTRN | NF1    | PRKCI   | RRAS2   | TCF12   |
| AKT3     | BRD7   | DACH1   | FLT1     | KRAS   | NF2    | PRKDC   | RUNX1   | TCF7L2  |
| ALB      | BTG2   | DCUN1D1 | FLT3     | KMT2A  | NFE2L2 | PSIP1   | RUNX1T1 | TET2    |
| ALK      | BTK    | DDR2    | FLT4     | KMT2B  | NKX2-1 | PMS2    | RXRA    | TGFBR2  |
| AMER1    | CARD11 | DICER1  | FOXA1    | KMT2C  | NKX2-8 | PTCH1   | SCAF4   | TGIF1   |
| APC      | CASP8  | DNMT3A  | FOXA2    | KMT2D  | NOTCH1 | PTEN    | SETBP1  | THRAP3  |
| APEX1    | CBL    | DPYD    | FOXQ1    | LYN    | NOTCH2 | PTMA    | SETD2   | TLR4    |
| APLNR    | CCND1  | EEF2    | GAS6-AS1 | MAGOH  | NOTCH3 | PTPDC1  | SF1     | TMSB4X  |
| APOB     | CCND2  | EGFR    | GATA1    | MAP2K1 | NPM1   | PTPN11  | SF3B1   | TNFAIP3 |
| AR       | CCND3  | ELF3    | GATA2    | MAP2K2 | NRAS   | PTPRC   | SIN3A   | TOP1    |
| ARAF     | CCNE1  | EP300   | GATA3    | MAP2K4 | NSD1   | PTPRD   | SLX4    | TOP2A   |
| ARHGAP35 | CD44   | EPHA2   | GATA6    | MAP3K1 | NTRK1  | RAC1    | SMAD2   | TP53    |
| ARID1A   | CD70   | EPHA3   | GNA11    | MAP3K4 | NTRK2  | RAD21   | SMAD4   | ТРМТ    |
| ARID2    | CD79B  | EPHA5   | GNAQ     | MAPK1  | NTRK3  | RAD50   | SMARCA1 | TRAF3   |
| ARID5B   | CDH1   | ERBB2   | GNAS     | MDM2   | NUP133 | RAD51   | SMARCA4 | TSC1    |
| ATF7IP   | CHD3   | ERBB3   | H3F3A    | MDM4   | NUP93  | RAD51B  | SMARCB1 | TSC2    |
| ATM      | CHD8   | ERBB4   | H3F3C    | MECOM  | PALB2  | RAD51C  | SMC1A   | TSHR    |
| ATP11B   | CDK12  | ERCC2   | HGF      | MED12  | PAX5   | RAD51D  | SMC3    | TXNIP   |
| ATR      | CDK2   | ESR1    | HIST1H3B | MEN1   | PBRM1  | RAF1    | SMO     | U2AF1   |
| ATRX     | CDK4   | EZH2    | HNF1A    | MET    | PD-1   | RARA    | SOS1    | UGT1A1  |
| ATXN3    | CDK6   | FANCA   | HRAS     | MGA    | PDGFRA | RASA1   | SOX17   | UNCX    |
| AURKA    | CDKN2A | FANCC   | IDH1     | MLH1   | PDGFRB | RB1     | SOX2    | USP9X   |
| AXIN1    | CDKN2B | FANCD2  | IDH2     | MPL    | PD-L1  | RBM10   | SOX9    | VHL     |
| AXIN2    | CEBPA  | FANCE   | IGF1R    | MRE11A | PD-L2  | RET     | SPOP    | WHSC1   |
| B2M      | CHD4   | FANCF   | IL6      | MSH2   | РІКЗСА | RFC1    | SPTA1   | WT1     |
| BAP1     | CHEK2  | FANCI   | IL6ST    | MSH3   | PIK3CB | RHEB    | SPTAN1  | XPO1    |
| BCL2     | COL5A1 | FANCL   | IL7R     | MSH6   | PIK3CG | RHOA    | SRC     | ZFHX3   |
| BCL2L1   | CREBBP | FAS     | INSR     | MTOR   | PIK3R1 | RHOB    | SRSF2   |         |
| BCL2L11  | CSF1R  | FAT1    | JAK1     | MUC6   | PIK3R2 | RICTOR  | STAG2   |         |
|          |        |         |          |        |        |         |         |         |

#### **GENES LIST BY THERAPY**

#### Some examples of useful genes for targeted therapies :

| AKT1    | CYP2D6 | FGFR1    | MAP2K2 | RAD51D |
|---------|--------|----------|--------|--------|
| ALK     | DPYD   | FGFR2    | MET    | RAF1   |
| AR      | EGFR   | FGFR3    | MTOR   | RB1    |
| ARID1A  | ERBB2  | FGFR4    | NRAS   | RET    |
| BRAF    | ERBB3  | GNA11    | NTRK1  | ROS1   |
| BRCA1   | ERBB4  | GNAQ     | NTRK2  | SMAD4  |
| CCND1   | ESR1   | GNAS     | NTRK3  | SMO    |
| CCNE1   | EZH2   | HIST1H3B | PALB2  | ТРМТ   |
| CDK4    | FANCA  | HRAS     | PDGFRA | TSC1   |
| CDK6    | FANCC  | IDH1     | PDGFRB | TSC2   |
| CDKN2A  | FANCD2 | IDH2     | PIK3CA | VHL    |
| CDKN2B  | FANCE  | IGF1R    | PTEN   |        |
| CHEK2   | FANCF  | JAK2     | RAC1   |        |
| CSF1R   | FANCI  | KIT      | RAD51  |        |
| CTNNB1  | FANCL  | KRAS     | RAD51B |        |
| CYP2C19 | FBXW7  | MAP2K1   | RAD51C |        |
|         |        |          |        |        |

#### CANCER TYPE SPECIFIC PACKAGE

→ IHCs for targeted therapies

- → IHCs for chemotherapies
- → IHCs for immunotherapies
- → Other (translocation analysis, methylation)
- → Immunogram (MSI + TMB)



: Usual hospitals routine XXX : New in OncoDEEP V6 XXX : Already in previous version

#### Some examples of useful genes for immunotherapies :

POLE PMS2 PTEN STK11

| ARID2 | JAK2 | PBRM1 |
|-------|------|-------|
| APLNR | JAK3 | PD-1  |
| B2M   | MLH1 | PD-L1 |
| BRD7  | MSH2 | PD-L2 |
| JAK1  | MSH6 | POLD1 |

#### Some examples of useful genes for PARP inhibitors :

| ARID1A | FANCC  | FAS    |
|--------|--------|--------|
| ATM    | FANCD2 | PALB2  |
| BRCA1  | FANCE  | RAD51  |
| BRCA2  | FANCF  | RAD51B |
| CHEK2  | FANCI  | RAD51C |
| FANCA  | FANCL  | RAD51D |



# **OncoDEEP Key actionable genes** and gene region



MUTATIONS: ARID2, B2M, BRD7, JAK1, JAK2, JAK3, MLH1, MSH2, MSH6, PBRM1, PD-1, POLD1, POLE, PMS2, PTEN, STK11











## Non-Small Cell Lung Cancer

STK11 inactivation and immunotherapy resistance

Mutational inactivation of STK11/LKB1 represents a novel genomic predictor of de novo resistance to immune checkpoint blockade in KRAS-mutant LUAC, whereas TP53 comutations are associated with high likelihood of response. Precision immunotherapy will require tailoring to the co-mutation status of individual tumour (Stoulikis 2017)

## **Cancer of Unknown Primary**

NGS alone is not sufficient for accurate decisions

Molecular diagnostics and gene expression platforms are considered helpful when used to complement IHC testing for tissue of origin assessment allowing more accurate diagnosis and specification of tumour origins recommended as part of the standard evaluation for selected patients with CUP (Consensus doc. SEAP-SEOM, 2018) (F. Losa et al 2018)

# About OncoDNA solutions

We use a combination of the most relevant molecular technologies to support oncologists in their decisions for patient treatment.

Our innovative approach is to combine next-generation sequencing (NGS) with immunohistochemistry (IHC) and additional techniques. This gives a comprehensive view of the tumour profile at the DNA, RNA and protein levels and can help identify more therapeutic options for the patient. Moreover, in 2016 we included liquid biopsy analyses in our solution portfolio, either in combination with solid biopsies or as standalone.

#### **SOLID BIOPSY:**

## 😣 OncoDEEP



OncoDEEP analyses solid biopsies by combining nextgeneration sequencing (313 genes), IHCs to study protein expression and additional tests. This complete tumour profiling allows to predict patient response to approved or experimental targeted drugs, immunotherapies and chemotherapies.

The NGS panel is accurately designed according to oncologists' needs in their current practice. Importantly, it includes an accurate determination of MSI, TMB and LOH. The NGS panel is regularly updated based on new findings reported in literature in order to provide patients with the most cost-effective solution.

#### MATERIAL

• 1 block or 25 slides (5 µm on SuperFrost Plus)

#### **RECOMMENDED FOR:**

- All solid tumours (stage III or IV) in adults - Glioblastoma in children

#### SOLID AND LIQUID BIOPSIES:



#### THE COMPLETE SOLUTION INTEGRATING THE ANALYSIS **OF SOLID AND LIQUID BIOPSIES**

OncoSTRAT&GO is an integrated approach that combines the analyses of a solid biopsy (by next-generation sequencing (313 genes), IHCs and additional tests) with the analysis of a blood biopsy. The blood profiling focuses either on the circulating tumour DNA (for deciphering tumour heterogeneity) or in DNA from blood cells (for studying specific germline gene alterations related to BRCAness phenotype that are challenging to detect in FFPE samples).

OncoSTRAT&GO establishes a complete genetic profile of the tumour, which can be used to identify sensitivity or resistance to targeted therapies, chemotherapies and immunotherapies.

#### MATERIAL

- 1 blood sample (1x10 ml Streck tube or 1x10 ml EDTA tube)
- 1 block or 25 slides (5 µm on SuperFrost Plus)

#### **RECOMMENDED FOR:**

The following stage IV solid tumours in adults:

- Non-small cell lung cancer
- HR+, HER2+ and triple-negative breast cancer
- Colorectal cancer
- CUP
- Ovarian cancer
- Pancreatic cancer
- Prostate cancer

#### **NO SOLID BIOPSY:**





#### CANCER-SPECIFIC SOLUTION FROM A LIQUID **BIOPSY SAMPLE**

OncoSELECT is a fast and minimally invasive analysis of circulating tumour DNA from a blood sample.

It is the perfect solution to identify therapeutic options for cancer patients not able to have their tumour biopsied or whose biopsy is too old. It can be used as a tool to detect treatment resistance to targeted therapies (before first-line to check the heterogeneity of the disease, or during/after treatment to check for acquired resistance mutations), as well as for monitoring cancer progression.

#### MATERIAL

2 blood samples (2x10 ml Streck tubes)

#### **RECOMMENDED FOR:**

- The following stage IV solid tumours in adults:
- Non-small cell lung cancer
- Breast cancer HR+ or HER2+
- Colorectal cancer



We use a **combination** of the most relevant molecular technologies to support oncologists in their decisions about patient treatment

#### **MONITORING RESPONSE:**



OncoDNA can also providea solution for personalised monitoring.

Do not hesitate to request more information or our support at sales@oncodna.com

# OncoDEEP results in an integrated theranostic report

### 1 MEDICAL INFORMATION

- High definition image of the tumour sample
- Clinical form with patient clinical data
- Cancer type and stage

#### 2 NEXT-GENERATION SEQUENCING

- Complete list of variants and their biological and therapeutical impact
- List of genes sequenced
- MSI (microsatellite instability)
- TMB (tumour mutational burden)
- Alpha list: Biomarkers associated with FDA and/or EMA approved drugs with pharmacogenomic information on their labels, as well as variants associated with clinical resistance or sensitivity to FDA/EMA approved drugs

### ADDITIONAL TESTS

- Immunohistochemistry (for chemotherapy, targeted therapy or immunotherapy response prediction)
- Unusual splicing and methylation
- Translocations or fusions

## 

The immunogram shows the potential response of each patient to immunotherapy. It is created from (1) the percentage of PD-L1-positive tumour cells, (2) the percentage of infiltrated CD8+ T cells, (3) the level of tumour mutational burden, (4) the microsatellite stability status of the tumour, and (5) the presence of mutations associated with either sensitivity or resistance to immunotherapy.

The larger the area, the better the patient should respond to immunotherapy.

| Your Name (#20181130-4)<br>Biliary Tract - Intrahepatic Cholangioca | rcinoma 🖻 🔍 <                    | ONCODEEP ~ ±                                                                                                 | DOWNLOAD REPORT (F                                                                                  |
|---------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                                                     |                                  | Validated                                                                                                    |                                                                                                     |
| DASHBOARD MEDICAL INFORMATION                                       | CLINICAL TRIALS ADDITIONAL TESTS | NGS MORE                                                                                                     |                                                                                                     |
| 80 <u>8</u>                                                         |                                  |                                                                                                              |                                                                                                     |
| MEDICAL INFORMATION                                                 | •• MEDICAL INFORMA               | TION •• NEXT-GENERA                                                                                          | TION SEQUENCING                                                                                     |
| CLINICAL FORM                                                       | PATHOLOGY                        |                                                                                                              | 6                                                                                                   |
| Sample collect                                                      |                                  | ERBB2                                                                                                        | 2                                                                                                   |
| Diagnosis date<br>Diagnosis 3/2/15                                  | 1 Realist                        |                                                                                                              |                                                                                                     |
| Diagnosis Size is                                                   | in the sa                        | PIK3CA                                                                                                       |                                                                                                     |
| Tumor primary site Uterapy                                          | ALY AN CALLS                     | A second to a                                                                                                |                                                                                                     |
| Tumor Previous                                                      | CHOLANGIOCA                      | RCINOMA                                                                                                      | 25 50 75 10                                                                                         |
|                                                                     |                                  |                                                                                                              |                                                                                                     |
| ADDITIONAL TESTS (6)                                                | 3 IMMUNOGRAM                     | 4 COMPREHENS                                                                                                 | IVE SUMMARY                                                                                         |
| pERK1/0pAKTp4EBP1                                                   |                                  |                                                                                                              |                                                                                                     |
| tow to tow to more                                                  | Ϋ́                               |                                                                                                              |                                                                                                     |
| TOP2A AR TS tow                                                     | Y /                              |                                                                                                              |                                                                                                     |
|                                                                     |                                  |                                                                                                              | The summary second                                                                                  |
|                                                                     | 10                               |                                                                                                              |                                                                                                     |
| DRUGS                                                               | 6 CLINICAL TRIALS                | BIBLIOGRAPH                                                                                                  | Y (8)                                                                                               |
| DRUGS                                                               | 6 CLINICAL TRIALS                | 7 BIBLIOGRAPH                                                                                                | Y (8)                                                                                               |
| DRUGS                                                               | 6 CLINICAL TRIALS                | 7 BIBLIOGRAPH<br>P53 mutations in<br>clinical character                                                      | Y (8)<br>advanced cancers:<br>ristics, outcomes, and                                                |
| DRUGS<br>Approved 2 0 0                                             | CLINICAL TRIALS                  | 7 BIBLIOGRAPH<br>P53 mutations in<br>clinical character<br>correlation betw<br>survival and beva             | Y (8)<br>advanced cancers:<br>ristics, outcomes, and<br>een progression-free<br>acizumab-containing |
| DRUGS<br>Approved 2 0 0<br>For other 5 2 0                          | CLINICAL TRIALS                  | 7 BIBLIOGRAPH<br>P53 mutations in<br>clinical character<br>correlation betw<br>survival and beva<br>therapy. | Y (8)<br>advanced cancers:<br>ristics, outcomes, and<br>een progression-free<br>acizumab-containing |

#### Ê



- List of treatments that could be associated with clinical benefit, as well as those that may not provide any benefit
- Simplified molecular pathway(s)

#### 6 DRUGS

- List of treatments associated with:
- Potential clinical benefit
- Potential lack of clinical benefit
- Undetermined clinical benefit
- Toxicity
- Trade names, therapeutic classes, official indications
- Approval status for the type of cancer and for other indications
- Drugs in development

### **7** CLINICAL TRIALS

List of all clinical trials associated with certain features of the molecular profile of the patient.

## 8 BIBLIOGRAPHY

List of all publications used in the report that are related to the patient's molecular profile.



# How to order an OncoDEEP test?



#### OncoSHARE: An easy way to access & order your tests and receive the personalised report on treatment recommendations

When you join **OncoSHARE**, you become a member of an active network gathering together more than 13 000 patients and oncologists.

Regardless of whether we are dealing with information about patient health or payment, we take every precaution to ensure your security. OncoSHARE is used by oncologists to order our solutions, to display interactive analysis reports and to connect health care professionals to each other and to our team of experts.

In a simple, interactive manner, **OncoSHARE** will guide you in your selection of the most appropriate treatment options based on the unique signature of your patient's tumour.



2.1. Proceed to payment (credit card or wire transfer) 2.2. We ship the corresponding sample collection kit to you



#### **COLLECT THE SAMPLE**

Collect the biopsy and send the kit back to OncoDNA. Please print your own prepaid shipping label generated online at https://delivery.oncodna.com.



#### SAMPLE ANALYSIS

On arrival at the OncoDNA facilities, the sample quality is checked and the sample is recorded in our tracking system for further analysis.



#### YOUR REPORT READY ON ONCOSHARE

After interpretation by our experts, the results are published in an interactive report that is made available in your OncoSHARE account.

#### 6. WE SUPPORT YOU

Support is available at all times, for patients through our Patient Care department (infos@oncodna.com) and for oncologists via our scientific team (molecular@oncodna.com).



www.oncoshare.com

DEEP2019-HQ-DEEP-DA-HCP-20190605-4





# OncoDEEP

OUR UNIQUE SOLUTION COMBINING NGS AND PROTEIN ANALYSES OF A SOLID TUMOUR SAMPLE

SCREENING MORE THAN THE USUAL SUSPECTS Combination is Key for Clinical Benefit

#### **REFERENCES**:

Skoulidis, F. et al. STK11/LKB1 co-mutations to predict for de novo resistance to PD-1/PD-L1 axis blockade in KRAS-mutant lung adenocarcinoma [abstract]. J. Clin. Oncol. 35, Suppl., 9016 (2017) Toulos N 20017 Oncol Rep. 2017 Dec;38(6):3419-3429. doi: 10.3892/or.2017.6051. Epub 2017 Oct 23. Losa et al 2018 Clin Transl Oncol. 2018 May 28. doi: 10.1007/s12094-018-1899-z Laes et al 2018 The clinical impact of using complex molecular profiling strategies in routine oncology practice Oncotarget, 2018, Vol. 9, (No. 29), pp: 20282-20293